agºÍ¼Ç

À´Ô´£º´ÉÆ÷²è±­ £¬×÷Õߣº £¬£º

°¥ £¬½²µ½´ºÔË £¬¸ãµÃÈËÂÑ·³ £¬Ã¿Äê¶¼²îδ¼¸Âï £¬Æ±ÄÑÇÀ £¬ÈËÄѼ· £¬ÂÑ»ðÌ̵úÜ¡£¸ü×ÓÄã½² £¬Äĸö²»ÏëÊæ·þµã»Ø¼Ò࣠£¿Õ⼸ÄêÎÒÌýµ½Ò»¸öÖ°Òµ £¬½ÐÈ«¹ú¸ß¶ËÉÌÎñ¾­¼ÍÈË £¬ÌýÆðÀ´µð¸ÜµÄ £¬¸ãŨˮû £¿Æäʵ £¬ÕæÓеãÓà £¬ÌرðÊÇ´ºÔËÕâÖÖʱºò¡£

È«¹ú¸ß¶ËÉÌÎñ¾­¼ÍÈ˾¿¾¹¸ãɶµÄ £¿

ุúÄ㽲࣠£¬ÌýÃû×ÖËÆºõºÜ¸ß¶Ë £¬·Ï½²Âï £¬È·ÊµÓеã¸ß¼¶¡£ËûÃÇÖ÷ÒªÊǸøÄÇЩÉÌÎñÈËÊ¿°²ÅÅÖÖÖÖЧÀÍ £¬°ïÄã¸ã¶¨½»Í¨¡¢×¡ËÞ¡¢ÁíÓÐÒ»Ð©ÌØÊâÐèÇó¡£ÄãÏþµÃû £¬ÓÐЩÈËæµÃÂѶ¼Ã»µÃÓ÷¹ £¬¸Ïʱ¼ä»Ø¼Ò¹ý½Ú £¬ÕâЩÈËÄܰïÄãʡʡ£ºÃ±È´ºÔ˵Äʱºò £¬ÇÀƱÕâÊ´ó¶¼Êǽ»¸øËûÃÇà¶ £¬ÂÑÃÍ£¡

ÏëÏë°¡ £¬´ºÔËÆ±Ïñ·èÁËÒ»ÑùÄÑÇÀ £¬ÅŶÓÅŵ½ÂѶ¼ÂéÖ± £¬ÄãÒ»¸öÈ˸ãÂÑû¼û¡£µ«ÕâЩ¾­¼ÍÈËÓÐÇþµÀ £¬°ïÄã°²ÅŵÃÍ×Í×µÄ £¬Ã»µÃ½²¡£Ã»ÐÅÄã¿ËÊÔÏÂ×Ó £¬×ø¸ßÌú¶¼ÄܸøÄã¸ãÉÌÎñ²Õ £¬Ë¬µ½ÂѶ¼µø£¡

´ºÔËÆÚ¼ä £¬¹ðÁøÕâ±ßÄÜÓõÃÉÏËûÃDz» £¿

Ïà¹ØÍ¼Æ¬

½²µ½¹ðÁÖºÍÁøÖÝ £¬´ºÔËʱºòÈ˶àµÃÂÑ»ðÌÌ¡£ÌرðÊǹðÁÖ»ð³Ã÷ÈÕ¾ÄÇ¿­ £¬ÆßºÚ°ËºÚµÄ £¬¼·µÃÏñ°ÇÀô¬Ò»Ñù¡£ÁøÖÝÕâ±ßÂï £¬Áø½­±ßµÄ»ð³Ã÷ÈÕ¾Ò²µßµÃÂѶ¼µø¡£ÄãÏþµÃ £¬ÕâÑùµÄ³¡ºÏ £¬È«¹ú¸ß¶ËÉÌÎñ¾­¼ÍÈ˾ÍÅÉÉÏÓó¡ÁË¡£É¶Òâ˼࣠£¿ÄãÏë×ø·É»ú £¬×ø¸ßÌú £¬ËûÃǶ¼ÄܰïÄã¸ã¶¨Æ± £¬Ã»È»Äã¾ÍµÈ×ÅÔÚ³Ã÷ÈÕ¾±ø¸ê°É¡£

ÐÑÁúµã£º ¿ËÄÇ¿­×îºÃ¼°Ôç £¬Ã»È»ÂѼ·ÈË £¬Ã«¶¼Ãþûµ½¡£ÁíÓÐ࣠£¬ÕÒÕâЩ¾­¼ÍÈË×îºÃÌáǰÁªÏµ £¬Ã»È»ÅŲ»ÉϺŠ£¬¸ãÂÑû¼û¡£
Ïà¹ØÍ¼Æ¬

³ýÁËÆ± £¬ËûÃÇ»¹Äܰïɶ £¿

¶ªÄÇÐÇ £¬²îµãÍüÁ˽² £¬ËûÃDz»Ö¹ÊǰïÄãÇÀƱÕâô¼òµ¥à£¡£Äã¸Ï»ð³µ £¬¸Ï·É»ú £¬ÐÐÀî¶àµÃÏñ°á¼Ò £¬ËûÃÇ»¹Äܸã½ÓËÍЧÀÍ¡£ÁøÖÝÕâ±ß £¬ÓÐЩÈ˼ÒÀïÀë³Ã÷ÈÕ¾ÂéÔ¶ £¬Æïµç¿¶¼ÒªÆï°ëÌì £¬¸ü×ÓÂѸ㷨 £¿ÕâЩ¾­¼ÍÈËÖ±½Ó¸øÄã°²Åųµ £¬½ÓËÍЧÀ͸ãµÃÍ×Í×µÄ £¬Ã»ÂÑÀíÄ㻹µÈɶ࣠£¿

ÁíÓÐ࣠£¬ÓÐЩ¾­¼ÍÈË»¹ÄܰïÄã¶©¾Æµê £¬´ºÔËÆÚ¼ä¹ðÁֵľƵêÂѹóµÃºÜ £¬ÏñÑôË·ÄÇ¿­¾Í¸ü×ÓÂѸ㷨ÁË¡£ËûÃÇÓйØÏµ £¬°ïÄã¸ãµ½ÕÛ¿Û·¿ £¬ÂѺû®Ëã £¬Äã½²ÊDz»ÊǸü×Ó £¿


ÄǾ¿¾¹¸ü×Óѡȫ¹ú¸ß¶ËÉÌÎñ¾­¼ÍÈ˲ſ¿Æ× £¿ÂÑÓö¼Ã»£¡Äã¾Í¼Ç×ÅÒ»µã£ºÕÒÓпڱ®µÄ £¬Ã»È»¸ãë»Ò £¬À˲ÙÐÄÇé¡£´ºÔËÄÇôæ £¬Ñ¡¶ÔÈ˲ŻªÊæÐÄ¡£

È«¹ú¸ß¶ËÉÌÎñ¾­¼ÍÈË, ´ºÔ˻ؼÒ, ¹ðÁÖ»ð³Ã÷ÈÕ¾, ÁøÖݽ»Í¨, ÉÌÎñЧÀÍ

Ïà¹ØÍ¼Æ¬

¡¶Ò˱öÊÐÍÆÄõê×î¶àµÄÒ»Ìõ½Ö¡·

ËûÈÏΪ £¬ÖйúÆû³µ³öº£µÄÓÅÊÆÖ÷ÒªÌåÏÖÔÚÈý¸ö·½Ã棺ÐÂÄÜÔ´Æû³µÆñÂÛÊÇÉè¼ÆÀíÄî £¬²úÆ·ÐÔÄÜÖÊÁ¿ £¬ÕÕ¾ÉÓû§Ê¹ÓÃÌåÑé £¬¶¼¾ß±¸½Ï¸ßˮƽ £¬¹ú¼Ê¾ºÕùÁ¦½ÏÇ¿ £¬¹Å°åȼÓÍÆû³µÔÚÐÂÐËÊг¡Ò²¾ß±¸½ÏÇ¿¾ºÕùÓÅÊÆ£»Æû³µ¹¤ÒµÁ´»ù´¡½ÏºÃ¡¢Æ·À฻ºñ £¬Á㲿¼þÌåϵÍ걸¡¢ÆóÒµÖÚ¶à £¬Äܹ»ÎªÆû³µ¹¤Òµ³öº£Ìṩ֧³Å£»¶¯Á¦µç³ØµÈ²¿·ÖÒªº¦Á㲿¼þ¾ß±¸¾ºÕùÓÅÊÆ¡£

¡¶×Ͳ©200Ôª¿ì²ÍЧÀÍ¡·

¡¶UNIFIED MULTIMODAL AND MULTILINGUAL RETRIEVAL VIA MULTI-TASK LEARNING WITH NLU INTEGRATION¡·

¡¶¶«Ý¸ÎÂÌÁСÏï×Ó¡·

2026Äê1ÔÂ4ÈÕ £¬½­ËÕÑſ˿Ƽ¼¹É·ÝÓÐÏÞ¹«Ë¾£¨Ö¤È¯´úÂ룺002409 £¬¼ò³Æ¡°Ñſ˿Ƽ¼¡±£©Ðû²¼Í¨¸æ³Æ £¬ÆäÈ«×Ê×Ó¹«Ë¾³É¶¼¿ÆÃÀÌØÌØÖÖÆøÌåÓÐÏÞ¹«Ë¾£¨¼ò³Æ¡°¿ÆÃÀÌØ¡±£©ÕýʽÒýÈëÐËÒø½ðÈÚ×ʲúͶ×ÊÓÐÏÞ¹«Ë¾£¨¼ò³Æ¡°ÐËÒøÍ¶×Ê¡±£©¶ÔÆäÔö×Ê¡£±¾´ÎÏàÖúÓÉÐËÒµÒøÐÐÎÞÎý·ÖÐÐÁª¶¯ÐËÒøÍ¶×ÊÍê³É £¬ÊÇÐËÒøÍ¶×Ê×Ô2025Äê11ÔÂ16ÈÕ¹ÒÅÆ½¨Á¢ÒÔÀ´ £¬Ç©Ô¼µÄÐËÒµÒøÐÐÈ«ÐÐÊ×µ¥°ëµ¼ÌåÐÐÒµÊг¡»¯Õ®×ª¹ÉÏîÄ¿ £¬Ò²ÊǹɷÝÖÆÒøÐнðÈÚ×ʲúͶ×ʹ«Ë¾ÔÚ½­ËÕʡǩԼµÄÊ׸öÊг¡»¯Õ®×ª¹ÉÏîÄ¿¡£

ÍøÕ¾µØÍ¼