agºÍ¼Ç

À´Ô´£º¹â·üÖ§¼Üͼ £¬×÷Õߣº  £¬£º

ุüÄ㽲࣠£¬¹ðÁÖÁøÖÝÕâ±ß £¬½²ÆðһЩ¡°ÉñÃØµÄµØ·½¡± £¬×ÜÊǰ®´«µÃÆßºÚ°ËºÚµÄ¡£ÄãÏþµÃû £¬ÓÐЩµØ·½°¡ £¬ÌýÆðÀ´¾ÍÏñÊǸöÃÕÍÅ £¬¸ãÂÑû¼ûµÄÄÇÖÖ¡£ºÃ±ÈËÃ÷ÈÕâ¸ö¡°qmÂ¥·ï×Ì´º¸óÂÛ̳¡± £¬ÄãÌý¹ýû £¿½ñÌìßÖ £¬ÎÒ¾ÍÀ´¸úÄã´µ´µË® £¬¿´¿´¾¿¾¹ÊǸü×Ӹ㷨£¡

qmÂ¥·ï×Ì´º¸óÂÛ̳ £¬Ãû×ÖÌýÆðÀ´ÂÑÉñÃØ

ÂÑÊǵÄ £¬µ¥ÌýÃû×־;õµÃÕâ¸öµØ·½Óеã¹ýÁúµÄ¸ÐÊÜ £¬ÊÇ࣠£¿Ê²Ã´¡°Â¥·ï¡±¡¢¡°×Ì´º¸ó¡± £¬ÕâÃû×ÖÆðµÃ £¬¸ãµÃÏñÊǹÅʱºòµÄÇàÂ¥Ò»Ñù £¬¹þ¹þ¹þ¡£Æäʵ°¡ £¬ßÖ¸öÂÛ̳ÊǸöÉ¶ÍæÒâÄØ £¿ÆäʵËüÊǸöÍøÂçÉϵĵط½ £¬×¨ÃÅ·ÖÏíһЩÍâµØÉú»îµÄÆßÆß°Ë°ËµÄÊ £¬½²µ½ÕâÀï £¬ÄãÊDz»ÊǸÐÊÜÓеãÐÑÁúÁË £¿

ÎÒ¹À¶Ñ £¬Ðí¶àÈËÒ»Ìýµ½Õâ¸öÃû×Ö £¬¿ÉÄÜ»á¾õµÃÊǸãŨˮµÄµØ·½ £¬Ã»µÃÕý¾­Ê¡£ÆäʵҲ²»¾¡È» £¬ÀïÃæßÖÓÐЩÈËȷʵÊdz¶ÂÑ̸ £¬µ«Ò²Óв»ÉÙÈËÊÇÕæµÄÔÚ·ÖÏíһЩÓÐÓõÄÐÅÏ¢ £¬ºÃ±ÈºÃ³ÔµÄ¹Ý×Ó¡¢ÄÄÀïÂò¹¤¾ß×ÔÖÆ £¬ÁíÓÐɶ×ӵط½ÊʺÏȥˣ¡£ºáÊú°¡ £¬ÕâÖֵط½¾ÍÊÇ £¬ÀïÃæÓнð×ÓÒ²ÓÐɳ×Ó £¬Ìô×Å¿´¿©¡£

´µË®×¨Çø £¬¹ðÁø»°Ìâ×î¶à

Ïà¹ØÍ¼Æ¬

¶ªÄÇÐÇ £¬²îµãû½²µ½Öص㣡ßÖ¸öÂÛ̳ £¬×îÓÐÒâ˼µÄ¾ÍÊÇרÃÅÓиö¡°´µË®×¨Çø¡± £¬ÀïÃæÌìÌì¶¼ÓÐÒ»¶ÑÈËÔÚ³¶Ì¸¡£ÌرðÊǹðÁÖºÍÁøÖݵÄÕâЩµØÍ·ÀÐ £¬Èý¾äÁ½¾ä¾Í¿ªÊ¼ÓùðÁø»°Ï໥¡°Ï´ÄÔ¡±ÁË£¡

ºÃ±È˵ £¬Ç°¼¸Ìì¿´µ½Ò»¸öÌû×Ó £¬½²µ½ÁøÖÝÄļÒÂÝòÏ·Û×îÓÐζµÀ £¬ÏÂÃæµÄÆÀÂÛÒ»¸ö±ÈÒ»¸öµð¸Ü¡£ÓÐÈË˵ijijµêµÄ¡°Â±Ë®Ïãµ½ÂÑ»ðÌÌ¡± £¬ÓÐÈËÓÖÅú²µ¡°¸ãÂÑû¼û £¬ÄĸöµêµÄÌÀµ×²ÅÊÇÍõÕ¨¡±¡£ÎÒ¸úÄ㽲࣠£¬ÕâÖÖÌû×Ó¿´Á˾ÍÊÇÀ˲ÙÐÄÇé £¬µ«ÓÖÈ̲»×¡µã¿ª¿´ £¬¹þ¹þ¹þ¡£

ÐÑÁúµã£ºÔÚ´µË®×¨Çø £¬¼Ç×ÅÒ»¾ä»°¡ª¡ª¡°Æß·ÖÕæÈý·Ö¼Ù¡± £¬±ðÈÏÕæ £¬Í¼¸öÀÖ×Ӿͺá£

ÍâµØÉú»îÇ鱨 £¬ÂÑÓÐÓõĵط½

²»¹ýßÖ £¬³ýÁË´µË®µÄ²¿·Ö £¬Õâ¸öÂÛ̳ÓÐЩʵÓõÄÐÅÏ¢ÕÕ¾ÉÂÑÓиãÍ·µÄ¡£ºÃ±ÈÄãÏë¸ãÇå³þ¹ðÁÖÄļҵÄÃ×·Û×îÕý×Ú £¬ÁøÖÝÄÄ¿­µÄÒ¹ÊÐ×îÈÈÄÖ £¬ßÖ¸öµØ·½¶¼ÓÐÈË·ÖÏí¹ý¡£ºáÊúÄãÖ»ÒªÉÔ΢ÇÚ¿ìµã·­Ìû×Ó £¬¿Ï¶¨ÄÜÍÚµ½µã·ÏÎï¡£

ÔÙ½²¸öÀý×Ó࣠£¬ÓÐÒ»´ÎÎÒÏëÕÒ¸öµØ·½ÐÞ³µ £¬½á¹ûÔÚßÖ¸öÂÛ̳ÉÏ¿´µ½ÓÐÈËÍÆ¼öÁËÒ»¼ÒÐÞ³µÆÌ £¬ËµÊÇ¡°ÀϰåÈËÂéÖ± £¬ÐÞ³µ¸ãµÃÂѺà £¬»¹²»ÂÒÔ×ÈË¡±¡£ÎҾͿËÊÔÁËÒ»ÏÂ×Ó £¬½á¹ûÕæµÄÂÑÊǵÄ £¬ÐÞÍê³µ»¹¸úÎÒ´µÁ˰ëÌìË® £¬ÀϰåÊǸöÐÑéÏé­ £¬¹þ¹þ¹þ¡£

×¢ÒâÊÂÏî £¬Äª±»¸ãŨˮÁË

½²¹é½² £¬ßÖ¸öÂÛ̳ÖÕ¾¿ÊǸöÍøÂçÉϵĵط½ £¬ÄÑÃâ»áÓÐЩÈ˸ãʺ¹÷ £¬·¢Ð©Ã»ÂÑÓõŤ¾ß¡£ºÃ±ÈÓÐЩÈËרÃÅÔÚÀïÃæ×ö¹ã¸æ £¬ÉõÖÁ¸ãÐé¼ÙµÄ¡°¿Ó¡± £¬Æ­Äã¿ËÏû·Ñ¡£ËùÒÔ࣠£¬×Ô¼ºÑÛ¾¦Òª²ÁÁÁµã £¬±ðһͷÔÔ½øÈ¥¡£

Ïà¹ØÍ¼Æ¬

ÁíÓа¡ £¬ÕâÖÖÂÛ̳Âï £¬×ܹéÊÇÓãÁú»ìÔÓ £¬ÓÐÈ˽²Õæ»° £¬ÓÐÈ˽²¼Ù»° £¬×Ô¼º¶à¶¯¶¯ÄÔ×ÓÆÊÎö²ÅÊÇÒªº¦¡£×ܲ»¿ÉÌýËû³¶ÂÑ̸¾ÍÐŵÃÂѹýÁú࣡£


¡°ÄǾ¿¾¹qmÂ¥·ï×Ì´º¸óÂÛֵ̳²»ÖµµÃÈ¥¿´¿´ £¿¡± ´ðÄã¶¼À§£¡Äã¾Íµ±ÊǸöÓéÀÖ £¬Í¼¸öÀÖ×Ó¡£ÒªÊÇרÃÅÈ¥ÕÒ¿¿Æ×ÐÅÏ¢ £¬¼ÇµÃ¶à¿´ÆÀÂÛ £¬¶àÎÊÎÊÆäËûÈË £¬±ð±»¿ÓÁË¡£

qmÂ¥·ï×Ì´º¸óÂÛ̳, ¹ðÁø´µË®, ÍâµØÇ鱨, ÍøÂçÉçÇø, ¹ðÁÖÁøÖÝÉú»î

¡¶È«¹ú¸ß¶Ë²è�×ÊÔ´¡·

×÷ΪȫÇòÁìÏȵÄרҵЧÀÍ»ú¹¹Ö®Ò» £¬°²ÓÀʼÖÕ½«½­ËÕÊÓΪÔÚ»ª½á¹¹ºÍÉú³¤µÄÕ½ÂÔÒªµØ¡£°²ÓÀ´óÖлªÇøÒµÎñÖ÷¹ÜºÏ×ÊÈ˱ÏË´½ÜÌåÏÖ£º¡°¶àÄêÀ´ £¬ÎÒÃÇ»ý¼«ÈÚÈë½­ËÕ¾­¼ÃÉç»áÉú³¤ÕóÊÆ £¬ÔÚÉ󼯡¢Ë°Îñ¡¢Õ½ÂÔ¡¢½»Ò×Óë×ÉѯµÈ¶à¸öÁìÓò £¬Îª½­ËÕ¸÷¼¶Õþ¸®¡¢ÖÖÖÖÆóÒµÌṩÁËÈ«·½Î»µÄרҵЧÀÍ £¬Ò²Ç×Éí¼ûÖ¤²¢ÖúÁ¦Á˽­ËÕ¾­¼ÃµÄÈÍÐÔÓë»îÁ¦¡£¡±

¡¶ÍâÃæÕÒ¿ì²ÍС½ã¡·

Ϊ´Ë £¬ÎÒÃÇÌá³öÁËÒ»ÖÖÐÂÓ±ÒªÁì FedDCG£¨Federated Joint Learning for Domain and Class Generalization£© £¬Í¨¹ýÓò·Ö×éÕ½ÂÔºÍÀàÌØ¶¨Ð­×÷ѵÁ·»úÖÆ £¬Ê×´ÎÔÚÁª°îѧϰÉèÖÃÏÂÁªºÏ½â¾öÀà±ðºÍÓò·º»¯ÎÊÌâ £¬ÏÔÖøÌáÉýÁËÄ£ÐÍÔÚδ֪Çé¿öÖеÄ׼ȷÐÔÓë³°ôÐÔ¡£

¡¶µËÖÝ¿µÀÖ½Ö150Ôª¿ì²Í²»ÏÞ´ÎÊý¡·

ÓëÍùÄêÏàËÆ £¬¡°ÂíÄꡱ¼ÍÄî±Ò³®¶Ò»»Ê×ÈÕÒøÐÐÍøµãÒÀ¾ÉÅŶÓÈç³±¡£

¡¶ÐÅÒËÊÐ×ÔÓÉÏï×ӵصãÔÚÄÄÀï¡·

¸ñÁêÀ¼µºµÄÇé¿öÔòÓÐËù²î±ð £¬ÕâÍêÈ«ÊÇÒ»¸ö´¿ÕþÖÎÐÔʼþ £¬ÉõÖÁÁ¬Ò»µãʯÓÍÏà¹ØµÄÇ£³¶¶¼Ã»ÓС£ÄÇôÊг¡»á¶Ô´Ë×÷ºÎ·´Ó¦ £¿ÎÒµÄÍÆ²âÊÇ£º²»»áÓÐÌ«´ó²¨ÌΡ£

ÍøÕ¾µØÍ¼